Fakethrough! GMOs and the Capitulation of Science Journalism

Good journalism examines its sources critically, it takes nothing at face value, places its topics in a historical context, and it values above all the public interest. Such journalism is, most people agree, essential to any equitable and open system of government. These statements about journalism are especially applicable to the science media. But while the media in general has recently taken much criticism, for trivialising news and other flaws, the science media has somehow escaped serious attention. This is unfortunate because no country in the world has a healthy science media.

This is science journalism?

According to the New York Times genetically engineered Xa21 rice was big news (Song et al 1995). In a 1995 article titled “Genetic Engineering Creates Rice Resistant to Destructive Blight”, journalist Sandra Blakeslee wrote it was:

“the first time that a disease-resistance gene has been put into rice”

YET ANOTHER BIOTECH BREAKTHROUGH?

Blakeslee then quoted a senior figure, Gary Toenissen, deputy director of agricultural sciences at the Rockefeller Institute in New York, as saying it heralded

“a new era in plant genetics and resistance breeding”.

But eighteen years after that artice was written, the failure of these predictions is clear. No commercial GMO rice of any kind exists, nor has Xa21 or any similar gene for disease resistance been developed for commercial purposes.

Neither was the research as novel as the Times made it sound. Toenissen claimed it was:

“the first time that a disease-resistance gene has been put into rice”,

but readers weren’t told that this gene was already in rice plants, because rice is where it came from (Song et al 1995). Blakeslee thus described neither a conceptual nor a commercial breakthrough. But it was certainly a very useful PR boost for plant biotechnology.

The high protein cassava that never was

Cassava packs a protein punch with bean genes was the title of a 2011 New Scientist article portraying a new GMO cassava developed by Dr Claude Fauquet and colleagues of the Donald Danforth Center, St Louis, USA. The Center, which is largely funded by Monsanto, had produced a GMO cassava using money from the Bill and Melinda Gates Foundation. Thanks to the addition of a synthetic protein (called zeolin), the modified cassava was reported to contain protein levels elevated by a factor of four and apparently sufficient to greatly improve the nourishment of “hungry children” (Abhary et al 2011).

But despite the enthusiasm of New Scientist, SciDevNet, and manyother media outlets, no such cassava is ever likely to feed the hungry of Africa. A subsequent investigation at the Danforth Center found that the “modified” cassava plants in their greenhouses had no zeolin gene in them. They were not transgenic despite the fact that illustrations in the Abhary publication appeared to show they were. The Abhary paper was therefore retracted (this was later noted by New Scientist and SciDevNet).

According to Danforth President James Carrington, the main author (Abhary) had left the country along with vital information:

“The specific route by which these [plants] were produced we could not determine.“

As Retraction Watch discovered, that appears to have been the end of high-protein cassava:

“The Fauquet lab has not gone back to redo the study properly,” Carrington said, “because the Gates grant that funded the project ended a few years ago.”

The virus-resistant sweet potato that vanished

In 2001 US special envoy Dr Andrew Young flew into Kenya to launch a GM virus-resistant sweet potato developed with Monsanto by Dr. Florence Wambugu. According to Forbes magazine its yields were “astonishing”, fully twice that of standard sweet potatoes. Dr. Wambugu, at that time the Kenyan project leader, told the Toronto Globe and Mail that her “modified sweet potato, for example, can increase yields from four tonnes per hectare to 10 tonnes”, and Canada’s National Post called GMOs a technology to pull “the African continent out of decades of economic and social despair”.

These eulogies appeared despite the absence of any scientific confirmation of the claims.

Subsequently, in 2004, it was acknowledged in Kenyan newspapers and on the website GMWatch that Monsanto’s virus resistance was ineffective in field tests and an official one report even claimed that“non-transgenic crops used as controls yielded much more per tuber compared to the transgenics”. Kenyan scientists involved in field testing were quoted as saying that:

all lines tested were susceptible to viral attacks.” and

The transgenic material did not quite withstand virus challenge in the field.”

Even these negative reports, however, didn’t prevent this being citedonce again in the US press, this time by celebrity scientist Pamela Ronald. Ronald wrote in the May 14th 2010 New York Times, that “virus-resistant sweet potatoes and high-yielding pearl millet are just a few examples of genetically engineered foods that could improve the lives of the poor around the globe.”

But in fact no GMO virus-resistant sweet potato varieties or scientific publications have ever emerged from Kenya or elsewhere. Presumably the story reported by Kenyan newspapers, that yields were considerably less than “astonishing”, was the accurate one.

Edible vaccines prove fruitless

While successful nutrient-fortified crops and virus resistance traits are routinely developed in non-GMO plant breeding programmes, the creation of edible vaccines seemed to be a potentially unique opportunity for GMO crops:

“Tangible consumer benefits could turn the debate on genetically modified food,”

said Novartis CEO Daniel Vasella about the PR possibilities of edible vaccines.

The edible vaccine concept (variously, lettuce, tomatoes, bananas and potatoes) was described by the Guardian in 2000 as “the most exciting area of biological science”, almost ready to “benefit millions of people in the developing world who could not afford western medicine.” Similar reports, spanning the years 2000-2005, appeared on PBS radio, in the New York Times, Scientific American (twice), and many other high profile media sources.

The articles typically focused on the theoretical advantages of edible vaccines (cheapness and ease of preservation) but neglected to discuss their downsides. These turn out to dwarf (as discussed at length here) the problems they are intended to solve. Some of these problems are applicable to any vaccine, but others relate to the GE process. For example, most established vaccines are not edible. They are injected expressly so as to bypass the saliva and stomach acids that would render them useless. Problems also arose getting GMO plants that produce vaccines to still grow well.

But many of the downsides of edible vaccines are more basic. Some stem from the questionable wisdom of making living medical products that are visually indistinguishable from food; others from the problems associated with self-medication by untrained individuals. With plants grown in backyards how will individuals keep track of the dose they have received? How does one safeguard the food supply against contamination with vaccine genes? How should edible vaccine programmes overcome likely inconsistencies of dose due to natural variations in climate, season, and other factors?

An alternative edible vaccine scenario often put forward, in which the vaccine is grown in a regional centre and distributed from there, poses its own problems, such as how to transport the edible vaccine, which is a perishable foodstuff, separately from the rest of the food supply?

As a consequence of these unresolved issues no product has gone beyond the status of a small initial trial in people or animals and a 2011scientific review concluded: “Edible transgenic plant vaccines have a long way to go before they will be ready for large-scale tests”. Yet even a large-scale test is not a final product.

Golden rice, the emperor of GMOs

Golden rice has the kind of PR to ensure it needs no introduction. The search term: “golden rice” + vitamin A generates 131,000 results on Google’s internet search engine (1).

Read more